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Abstract

Emulation-based models of distributed computing systems are collections of virtual ma-
chines, virtual networks, and other emulation components configured to stand in for oper-
ational systems when performing experimental science, training, analysis of design alterna-
tives, test and evaluation, or idea generation. As with any tool, we should carefully evaluate
whether our uses of emulation-based models are appropriate and justified. Otherwise, we run
the risk of using a model incorrectly and creating meaningless results. The variety of uses of
emulation-based models each have their own goals and deserve thoughtful evaluation. In this
paper, we enumerate some of these uses and describe approaches that one can take to build
an evidence-based case that a use of an emulation-based model is credible. Predictive uses
of emulation-based models, where we expect a model to tell us something true about the real
world, set the bar especially high and the principal evaluation method, called validation, is
comensurately rigorous. We spend the majority of our time describing and demonstrating the
validation of a simple predictive model using a well-established methodology inherited from
decades of development in the compuational science and engineering community.
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1 Introduction

Emulation-based models (EBMs) of distributed computing systems (we will define this term more
carefully in Section 2) are used for a variety of purposes by many different government, commer-
cial, and academic organizations. In some cases, these uses may have significant consequences like
making resource allocation decisions, evaluating design alternatives, training staff, or performing
test and evaluation. In other cases, the use may be less demanding, for example generating ideas
or demonstrating a concept.

Regardless of the specific use case, the first question we should ask ourselves when employing such
a model is how to determine and demonstrate that our use is credible and valuable. In more es-
tablished model-using disciplines like the aerospace or automotive industries, evaluating a model’s
fitness for purpose is a natural part of using a model. In disciplines that use the relatively recent
invention of EBMs, that habit has yet to emerge.

In this paper we will:

1. Describe what EBMs are

2. Describe some of the ways EBMs have been used to date

3. Discuss how one can generate convincing evidence that a specific use of an EBM is credible

There are a variety of uses for EBMs. The best way to ensure that we are using EBMs correctly
will depend on our specific uses and model implementations. A range of evaluation techniques
is available from informal to highly structured and rigorous. Choosing an evaluation method and
then applying it to an EBM can be tricky because EBMs are often large and complicated with many
moving parts.

In this paper, our discussions are based on the best information the authors have to date. No claim
is made that the ideas or processes discussed are comprehensive or complete. Our main goal is
to encourage careful and critical thinking about the uses of EBMs and to capture what we know
today about evaluating EBMs and provide a basis for ongoing research and development.
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2 Emulation-based Models of Distributed Systems

An EBM is a collection of virtualized or emulated computing, communications, or control system
components that are connected by virtualized networks. Virtual machines [30] stand in for personal
computers, servers, mobile phones, and embedded devices. Because the virtual machines or system
emulators used within EBMs reproduce a large fraction of the hardware interface of a real computer
system, they can run unmodified versions of real commercial or open source operating systems
and application software. Virtualization is a mature technology and is widely used in production
computing environments today. In an EBM, however, virtualization is used to create laboratory
models of distributed computing systems for experimental purposes. Open source hypervisors like
the Linux kernel virtual machine (KVM) [16] or Xen server [2] are often used to implement EBMs
for maximum flexibility and to minimize licensing costs.

Each virtual machine in an EBM is configured in a specific way with a desired number of virtual
CPUs, an amount of RAM, with attached storage devices like virtual disk drives, and with some
number of network interfaces. The virtual machines that make up an EBM run on a collection,
or cluster, of physical machines dedicated to experimentation. A virtual machine’s network in-
terfaces are connected to a virtual overlay network that is implemented on top of the computer
cluster’s physical network. The virtual overlay network is constructed using software switches
like OpenVSwitch [25] or Linux bridges and other techniques like VLANs, tap devices, and point
to point tunnels. Each virtual machine runs system software like Microsoft Windows, Linux, or
OpenBSD, as well as a variety of application software. The detailed configuration of each virtual
machine including the software it is running, the specific way the virtual machines are connected
together in the network, and what events take place within an experiment depend on what the EBM
is meant to accomplish.

For example, Figure 1(a) shows a simple example of an EBM design for testing a hypothesis about
whether a load balancer can continue to service requests given the failure of one of its back-end
servers. The abstract experimental topology includes client machines C1−C4 which provide load,
a switch to connect the clients, a load balancer, two servers S1− S2 across which the load will
be distributed, a switch connecting the pieces of server infrastructure, and a router that connects
the two otherwise isolated network segments. Each of the abstract components, including clients,
servers, router, load balancer, and switches, have properties attached to them that describe their
configuration.

Our fictitious experiment will put the claims of our hypothetical load balancer vendor to the test,
which are that service performance will degrade in proportion to the number of failed servers.
This is a good candidate for an EBM experiment because the outcome depends on the software
implementation details of the load balancer, a large, complicated system.

To actually run the experiment, the components of the design need to be instantiated as virtual
machines and other components on a set of physical computers. Figure 1(b) shows one possible
distribution of virtualized components across two physical hosts. The switches are shown dashed
to indicate that, in this design, they are instances of Linux bridges running on the physical host
to which virtual machines are connected rather than virtual machines themselves. There are many
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(a) (b)

Figure 1: An example experimental topology (a) and its instantiation (b) on the physical hosts of a small,
two-node cluster.

implementation details that the EBM orchestration software which creates and configures virtual
machines must handle. One example in this case is the fact that the logical client switch must be
split between the two physical cluster hosts since there are virtual machines located on both hosts
that must attach to that switch. A tunnel runs from client switchA to client switchB to unify the two
switches.

During the experiment, virtual machines will be created, operating systems will boot, software will
be installed and configured, the clients will begin generating load through the load balancer, and,
at some point, one of the servers will intentionally fail. Most EBMs are highly orchestrated and all
of the preceding will happen automatically, carefully managed by a set of orchestration tools. The
instantiated experiment will have been instrumented to record the behaviors we are interested in,
which, in this case, are the continued availability of the load-balanced service and how the failure
changes the performance of the service in terms of response latency or throughput.

Most EBMs are variations on the simple theme just described. An abstract topology is designed
to answer a question. That design is instantiated on physical computers using virtual machines
and other carefully configured emulation components. Scripted events implement experimental
actions. Finally, the systems we are interested in are thoroughly instrumented to answer a question
or achieve some other operational result.

We have experience building EBMs to represent enterprise networks, large internet services, and
control systems sitting at the heart of sections of regional electric grids. Assuming the information
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about the distributed system in question is available, an EBM is a convenient and relatively inex-
pensive way to build models of complicated computing systems and to observe and explore their
behavior and performance in a safe, low-consequence, experimental environment.

2.1 Beware

Because EBMs are based on virtual machines and networks that look and act much like their
physical counterparts, it is natural to believe that their performance and behavior will be very
similar to comparably configured physical systems. After all, if virtualized systems performed
dramatically worse or acted noticeably different from the physical systems we are more familiar
with, it is less likely that they would be widely adopted, which they have been. For this reason,
using EBMs for modeling purposes can be seductive. Because they intuitively seem to reproduce
the behaviors of non-virtualized systems and networks, we are lulled into the belief that their
detailed behavior will naturally meet our modeling and experimental expectations.

Unfortunately, we have evidence that this isn’t true. The detailed and sometimes large scale be-
havior of virtualized systems can be significantly different from equivalent physical systems. For
example, Chertov et al. [5] show how the forwarding behavior of emulated switches differs from
that of hardware switches and how it can affect a modeling application [6]. Paleari et al. [24]
demonstrate that the CPU implementation of widely used and compatible full system emulators
often diverge from the hardware specification they implement. Even when emulated behavior
is quite complete, the performance of simulations and emulators can diverge significantly [34],
potentially to the point where fundamental network properties are violated [10]. Finally, when
building models of complicated systems, it is easy to leave out important details and come to false
or misleading conclusions [9, 17]. Our own experiences trying to use EBMs mirror these reports.

EBMs are laboratory, experimental models. They stand in for some part of the real world that we
cannot or don’t wish to experiment on directly. This is a different approach than the one taken by
large scale mathematical models of physical systems. They are typically software implementations
of abstract mathematical representations, like differential equations, meant to describe selected,
externally observable characteristics of a system. A laboratory model, on the other hand, does
not try to abstractly describe the behavior of a system, it reproduces, usually in some reduced or
simplified form, the underlying mechanism we want to observe.

Laboratory models, though simplified versions of the real world, include all kinds of messy details,
inherent randomness, and error. Laboratory models do not, and often cannot, implement or include
all the features of the real systems they represent. For a variety of reasons, including resource
sharing, overhead, or simplifications, the performance of the emulated systems, on which EBMs
are based, can sometimes diverge dramatically from similarly configured real world systems. Even
when all relevant components are included in a model and performance parity is high, uncertainty
about parameters and configuration values can lead to bias or large variability in the measured
outputs of a model based on emulators.

Other laboratory models used in different disciplines exhibit the same kinds of problems and have
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similar advantages as EBMs. When biologists use fruit flies, mice, or even primates to study the
effects of medical treatments on humans they must be careful to eventually perform human trials
on promising interventions. It is very common that treatments, which appear to work well and
consistently in simpler laboratory models, fail when applied to the unique physiology of humans.
Hence, laboratory models of humans are efficient early stage tools to identify potentially promising
treatments. They help researchers generate ideas and perform tests to trim obviously unproductive
lines of inquiry. They are never used as the sole basis for setting public health policy or adjusting
human clinical practice without focused, and usually expensive, validation via human trials. In
spite of their shortcomings, laboratory models are immensely useful tools. They allow us to quickly
focus our attention on the most promising real world trials.

Similarly, wind tunnels, another type of laboratory model, have a long history of being used during
the design of air frames, wings, and other structures subject to high speed airflow. Performing tests
at reduced scale, but realistic air speeds, pressures, and temperatures has dramatically advanced
our knowledge of fluid flow and helped spawn the entire computational fluid dynamics modeling
field. However, wind tunnels exhibit variability and bias too [19]. Researchers and engineers must
take such errors and uncertainties into account or pay the price of poor performance predictions
and incorrect decisions later in the design and testing process.

Like any other tool, EBMs can be helpful time savers and extend our capabilities or they can lull
us into a sense of unwarranted confidence and lead to mistakes or misunderstandings. The key
question we want to begin addressing in this paper is “how do we go about discovering whether
our particular uses of EBMs are justifiable?”. We will discuss this problem for a variety of uses of
EBMs that we are familiar with and will cover some initial experience we have had attempting to
build evidence-based cases for or against the use of an EBM to answer specific questions or serve
some other purpose.
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3 Credibility Case for EBMs

When evaluating whether a particular use of an EBM is credible, our goal is to collect evidence
and construct a convincing case that the EBM is useful for our chosen purpose. As in a debate,
we know when our case is good enough when it can convince a skeptic of our thesis. There is no
general-purpose measure we can apply to an EBM to determine if it is appropriate independent of
its purpose. There is no general standard for adequate “fidelity” or “accuracy” without the context
of how a model is to be used. In fact, the same model may be perfectly appropriate to use for some
purposes, but fall hopelessly short for others.

In all of the cases we will discuss, the process for collecting evidence for or against using a model
is based on measuring a model’s performance. We will observe whether the EBM is able to meet a
pre-defined performance threshold and then base a judgment about whether or not to use a model
on that observed performance. In some cases the threshold will consist of achieving an operational
objective. In others, we will observe the degree to which an EBM matches the behavior of a real
world reference system. In all cases, the required threshold is driven by the specific model purpose.

A single test or measurement of an EBM will rarely suffice to build a good credibility case. EBMs
include many sources of randomness and other uncertainty. As with any other experimental en-
deavor, it will be necessary to replicate model observations so we can measure how consistently
our models meet or fail to meet our predefined credibility thresholds. Often, a modeling purpose
requires an EBM to perform adequately at many points within a large parameter space. Multi-
ple sets of tests at several different configurations ensure the model performs well enough for the
parts of the real world we are interested in. The full suite of replicated tests at various locations
is necessary before we can say anything meaningful about a model’s suitability for the associated
purpose.

A credibility case for an EBM will typically consist of:

1. A clear statement of the purpose of the model

2. The performance requirements of the model, driven by the purpose; these are usually quan-
titative or yes/no thresholds that must be met for specific, measurable outputs of the model
at specified locations in a parameter space

3. A justification for the performance thresholds that were chosen; i.e., reasons we believe the
model is good enough for our purposes if it meets the stated threshold

4. A description of the experiments we will perform to measure the model’s performance

5. The actual model measurements and a characterization of their variability or uncertainty

Given a credibility case, a model user or accreditation authority can then more easily judge whether
a particular use of a model is justified. Even when careful and extensive measurements have
been made, the ultimate choice to use or not use a model comes down to the informed judgment
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of a person. To ensure that incentives are appropriately aligned and that an honest assessment
is possible, the person deciding whether or not to use a model should also carry some of the
responsibility for the consequences of using a model inappropriately.
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4 Uses of EBMs

EBMs are used for a many different purposes. In this section we’ll discuss the principal uses of
EBMs that we have seen.

4.1 Predictive Analysis

One of the most interesting and certainly one of the most challenging uses of EBMs is for predictive
analysis. In this case, we expect a model of a software intensive distributed system to predict some
aspect of its corresponding real world system’s performance or behavior. The intent is for the
model to stand-in for the real world system that we care about for experimental purposes. We
use a model, rather than experimenting on the real world system directly for some combination
of cost, risk, or availability reasons. When possible, predictive analysis allows us to do reliable,
model-based experimental science to understand and predict the behavior of distributed systems.

Distributed software systems exhibit complicated, sometimes emergent behavior that is hard to
foresee, much like the physical systems that other brands of experimental science study. This is
true even when we have all of the software and hardware artifacts available to us from which the
system is constructed. This fact shouldn’t be surprising. Deciding whether a software system has
any specific non-trivial property is undecidable in the general case [27]. Even relaxed versions
of the problem become impractical when many, often independently developed and individually
complicated software systems interact with one other over networks or other interprocess com-
munications channels. EBMs provide one important way of systematically observing complicated
distributed systems with the intent of understanding their behavior better.

While EBMs are constructed from deterministic computing systems, they may include explicit and
implicit sources of randomness and uncertainty. Hence, the predictions we expect from a model
used in this way must be more than a single point estimate of the value we seek. A prediction
typically consists of:

1. A point estimate of the desired measure

2. A characterization of the point estimate’s variability in the form of a distribution or a confi-
dence interval for the summary statistic used to generate the point estimate

3. A measure of the estimate’s error, i.e., to what extent does the estimate systematically differ
from the real world?

4. A characterization of the error’s variability

The measure used for prediction need not be numeric or continuous. We may be predicting whether
a certain property will hold (a boolean) or what state a system will be in after a series of inputs (a
category). We can still measure how often we are right and how much that success rate varies.
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If we can show that a model is consistently capable of predicting the distributed system measures
we are interested in with small enough error for our scientific purposes, we can have confidence
that our use of the model for that purpose is credible.

Scientific use is a high bar for a model, especially an EBM, to achieve. The process that model
users typically employ to gather evidence to support the predictive use of a model, called veri-
fication and validation (V&V) [23], is commensurately rigorous. Because of the nature and use
of distributed computing systems, they will often not meet the requirements necessary to perform
strict validation. If a model is not validatable, it probably shouldn’t be used for predictive purposes,
especially in situations where the consequences for false conclusions are high. Other less definitive
techniques will be necessary to evaluate whether an unvalidated, but potentially still useful model
should be used for other, non-predictive purposes.

4.2 Training

EBMs are often used to create flexible computing and network environments in which to train staff,
especially those responsible for defending networks from external intrusion or for monitoring net-
works for internal abuse and malicious insider activity [33]. In some cases these environments
consist of fabricated, generic enterprise networks. In other cases modelers attempt to reproduce an
actual enterprise network configuration that includes the topology, services, and traffic expected
in the real world network that the trainee works in. Training environments can extend beyond en-
terprise networks to include industrial control systems and simulations of the associated physical
processes like electric power generation and transmission systems. Sometimes, more exotic col-
lections of devices that include weapons systems or specialized command and control systems and
networks are modeled. We have seen EBMs used as small-scale training environments for DoD
cyber defense staff, as the basis for large scale, multi-organization cyber exercises, to train and
test network defense operators’ skills using specific tools, or by incident response organizations to
war-game scenarios.

Virtualized training environments are especially useful because they provide a low consequence
venue where students can freely make mistakes, compensate, and repeat without fear of damaging
production systems or disrupting operations. EBMs are typically highly orchestrated, so it is easy
to tear down and re-establish the baseline training environment in a short time and with little effort.
EBMs also provide an easy way to instrument most aspects of a training environment including
recording the content of console displays, collecting a trainee’s keyboard and mouse usage, or
making full network packet captures that can be used for post training review and evaluation.

In all cases, the generic goal of a training event is to provide a positive training experience for
a trainee. By definition, a positive training experience contributes to the immediate or eventual
improvement in a trainee’s performance on the direct and indirect tasks related to the training
exercise. More specifically, training and exercises often have a concrete training objective they
attempt to achieve. For example, a cyber defense training exercise may want to familiarize staff
with the features of a new tool and ensure that everyone achieves a baseline level of proficiency in
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its use. The goal of a different training event might be to reduce incident response times to below
an acceptable threshold. Later, we will see how important it is to have specific and measurable
training goals when evaluating whether an EBM is an appropriate training tool.

4.3 Test and Evaluation

In a test and evaluation (T&E) use case, an EBM usually provides an environment in which a
system under test (SUT) is evaluated according to a formal test plan. A test team takes detailed
measurements of the SUT as it operates under a variety of conditions and eventually judges, based
on test results, whether it meets its previously agreed upon performance specifications. A SUT can
be a physical device, a virtual device, a software product, a complicated distributed system, or an
organizational procedure or technical process.

T&E environments share some important properties of other use cases. A training exercise, for
example, tries to influence the real world performance of an experiment participant, who isn’t an
explicit part of the EBM itself, by exposing them to events and stimuli within a virtualized envi-
ronment. In T&E, we are interested in the behavior of a SUT which is also alien to the virtualized
experimental environment. T&E is also much like a scientific experiment. In the T&E case, we
want to verify that the behavior, of the SUT, as measured during tests in a virtualized environment,
falls within predetermined bounds specified in the test plan. Verifying such a hypothesis is much
like predicting the real world behavior of the SUT.

Most importantly, regardless of whether the outcome of a test performed in a virtualized environ-
ment is pass or fail, we expect the observed behavior of the SUT within an EBM to match its
behavior in the real world closely enough that our test outcomes and judgments are valid in the
real world.

EBM tests, however, will rarely be the sole source of information about the performance of a SUT.
T&E within an EBM is often a lower cost pre-filter for performing more involved testing in a real
world environment. Like the prequalification of an aircraft part in a wind tunnel prior to full scale
free space atmospheric tests, performing one, or many, initial rounds of testing in the relatively
low cost environment of an EBM can save test time and resources. A common assumption is that
if a SUT fails in a virtualized environment, there is little hope that it will perform adequately in
full-scale, real world testing.

We have used EBMs to evaluate the performance of a variety of network-connected or software
systems including firewalls, intrusion detection systems, and network mapping tools.

4.4 Scenario and Idea Generation

In the early stages of an investigation of a system, we often don’t really know where to start.
We don’t understand the system well yet and we don’t have much of an idea about the range of
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behaviors it might exhibit in response to various inputs or changes in its environment.

For systems whose behavior is largely determined by software, EBMs can be helpful because
they allow us to instantiate the system and observe what it does in response to a large variety of
inputs and when configured in many different ways. EBMs let us quickly explore many scenarios
and start to get a feel for what some of the important questions are relating to our system of
interest. Generating ideas, often by playing interactively with systems, is a common, maybe the
most common, way EBMs are used today.

Using EBMs to generate ideas is low rigor. We don’t expect a model used in this way to tell us
truth about the real world. We just use the model to stimulate ideas and to be an aid to creative
thinking about the behavioral possibilities of a system.

Using EBMs as an aid for idea generation can be productive, but it is also quite dangerous. It is a
very common pitfall to move from this low-expectation mode of using an EBM to believing such a
model is predictive, especially under time pressure. Before we use any model to predict something
about the real world for decision support purposes, especially when the consequences of being
wrong are non-trivial, we must do enough additional evaluation work to convince a skeptic that our
use of the model is credible. A common red flag to be especially wary of is when an unevaluated
EBM, used for informal, idea generation purposes, exhibits behavior that violates our expectations.
Before coming to the conclusion that the surprise is real, additional testing is necessary.

4.5 Communication

Using a working model to demonstrate how a complicated mechanism works is a time honored
approach. Cut-away displays of internal combustion engines, electric motors, or pocket watches
communicate the principles at work much more effectively than pages of text or static diagrams.
EBMs can be used in just this way to show how a distributed computing system works in a con-
trolled environment that is easy to instrument and examine.

For example, we have used an emulated model of a fictitious enterprise network to show how a
certain type of malware might spread through an organization and demonstrate how mitigations
like reconfiguring important shared services or partitioning the network have an affect on the mal-
ware’s spread. The purpose of this exercise was not to predict the behavior of specific malware, but
rather to conveniently demonstrate some of the mechanisms and behaviors that have been observed
in the real world.

As with idea generation, the user of such a model must make it very clear that the model is being
used for demonstration purposes only and that, without additional evaluation work, we cannot use
the model to reliably predict anything about the real world.
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4.6 Operations

EBMs are usually highly orchestrated collections of virtual machines configured to approximately
represent some aspect of a real network. Using EBM infrastructure and tools it is often easy to
create large, complicated networks of realistic-looking machines and software services. There is
at least one interesting use case where EBMs have been given an operational, production role.

Attacks on information systems networks often follow a common pattern of activity. Attackers
begin with external reconnaissance, proceed to getting an initial foothold, elevate their privileges,
perform internal reconnaissance, spread laterally to the most lucrative parts of a network, then
collect and exfiltrate private information or do other malicious things like extort money from the
legitimate user of the systems using a ransom scheme. If a defender can interrupt the early stages of
that process, the cost of performing the attack may exceed an adversary’s resources or patience [12]
and prevent a successful compromise and prevent damage.

EBMs have been used to study and, in limited circumstances implement, large, on-demand net-
works of interesting-looking, but unimportant and sacrificial computers and services that are added
to a real network’s address space to deceive and distract would-be attackers [32]. One goal of such
“deception networks” is making the malicious activity more detectable by raising its profile. Le-
gitimate users of the network have no knowledge of and no need to visit the additional machines
and services, so most such activity is suspicious. Another motivation is to impose additional cost
and require additional effort during the initial phases of an attack with the hope of exceeding an
adversary’s budget.

The effectiveness of these kinds of defensive efforts is unproven, but, if carefully evaluated and
shown to work, could be a potent tool in a defender’s toolkit.
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5 Prediction vs. Other Uses of EBMs

In the scientific and engineering domains, validation is the gold standard when building a case that
a model is an appropriate substitute for the real world for a specific, predictive purpose. Validation,
in the case of EBMs, consists of making careful comparisons between model predictions and
observations of the real world or non-virtualized experiments [23]. We will discuss the process of
performing validation on EBMs in Section 6.

When we use an EBM for scientific, predictive purposes, validation is appropriate. However,
validation in the strict sense is quite demanding. Hodges and Dewar [11] define four requirements
for a model use to be validatable. Note that validation applies to a use of a model, not the model
itself.

1. The behavior we want to predict must be observable and measurable

2. The behavior must exhibit constancy of structure in time

3. The behavior must exhibit constancy across variations in conditions not specified in the
model

4. The situation in which the behavior occurs must permit the collection of ample data

If we expect a model to be able to predict the outcome of a real world situation well enough for a
scientific use, validation is the current best known tool. In Section 8 we will discuss some strategies
for evaluating uses of EBMs that do not meet this bar and how we might gain confidence that our
use of such a model is appropriate.

EBMs have the potential to be tripped up by any of the four requirements. Model uses that require
a detailed representation of human behavior, for example, are especially prone to fall afoul of
requirements 2 and 3 because of the natural adaptability of people and the fact that models of dis-
tributed computing systems are often inextricably connected to the rest of the world in complicated
ways that cannot be represented in a model. Studies of internet services, on the other hand, may
be unvalidatable for all but the service owner because they fail to meet requirement 1. Availability
of adequate amounts of data, addressed by requirement 4, is less often an issue, but we have seen
situations where data that is technically feasible to collect is not available for policy reasons.

Uses of EBMs that cannot be validated in the strict sense are not without value. We have outlined
several possible uses of EBMs in previous sections and most do not meet the requirements for strict
validation or do not merit the considerable extra work required for validation. However, they can
be valuable to their users. Validation should be reserved for the special cases where we expect an
EBM to stand-in for the real world and predict some aspect of its behavior reliably and when the
results of such a study will be used for decisions whose consequences, if the results are incorrect,
justify the additional labor of validation.
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6 Verification and Validation of EBMs

Verification and Validation (V&V) is the most appropriate technique for evaluating EBMs that fit
the pattern of a predictive model and that meet the requirements of validatability. The key ideas
behind V&V are very simple. We ensure the components making up the model do what we expect
and then we measure the predictive performance of our model by comparing predictions made by
the model to observations of an equivalent real world situation. While conceptually simple, the
details can be tricky and often depend on the informed judgment of an expert.

There are many thorough and readable discussions that cover the concept of V&V [22, 3, 23].
We will paraphrase the basic outline of general-purpose V&V to make the paper as self-contained
as possible, but it is worth the effort to read a more complete discussion of the many interesting
and thorny issues raised, especially by validation, which can quickly expand to encompass the
philosophy of science and the nature of knowledge obtained via experiment and observation.

6.1 Verification

Oberkampf and Barone [22] define verification as:

Verification: The process of determining that a model implementation accurately represents the
developer’s conceptual description of the model and the solution to the model.

Verification, which we have not discussed much in this paper, deals with determining that a model
is reliably doing what we asked it to do. In the computational science and engineering world
where modeling often consists of software implementations of mathematical models of physical
phenomena, verification deals with mathematics [28]. Verification generates evidence that the
software which implements and solves systems of mathematical equations to represent the behavior
we are interested in is doing the math correctly and repeatably. It answers the question “are we
doing the math right?”

While some EBMs include components that themselves are mathematical models of physical phe-
nomena, e.g., the power dynamics of an electricity distribution grid, most do not. Hence, verifica-
tion in the EBM world tends to mean something different.

EBMs are constructed from experimental components like virtual machines and virtual networks
that directly reproduce the behavior of the components they stand in for. The constituent pieces
of an EBM are often instances of the same kinds of hardware like CPUs, network interfaces, and
storage devices that occur in the real world. The behavior of an EBM can differ from that of a
strictly hardware system because, in a model, these building block devices are wrapped using a
software-based management technique, called virtualization, that allows one to oversubscribe a
single component, like a CPU, such that many logical copies of that device appear to exist in the
model. In reality, a single device is being shared among all the virtual instances using time or
space multiplexing [7]. In other cases, differences come from the substitution of a software device,
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like a software-defined network switch, for a hardware version of that device. These emulated or
virtualized doppelgangers look similar enough to their hardware cousins that most software can use
them transparently without changing much of its functionality, but may change the performance or
behavior enough to impact the results of an experiment.

So, in the case of EBMs, verification consists of a modeler assuring themselves that the compo-
nents making up a model perform in accordance with the modeler’s expectations. That can mean
that there are no major, relevant software bugs that influence the performance or behavior of the
component in an unexpected way. But, it can also mean that an imaginary, completely bug-free
implementation includes all the functionality and performance characteristics that the modeler will
demand at runtime within an EBM. Software code reviews for quality assurance and functionality
testing are two ways a modeler could gather relevant evidence that the model components from
which an EBM will be constructed meet their expectations.

The verification task continues throughout the process of using and validating an EBM. It is often
the case that, in order to maintain an adequate level of performance, a component, like a CPU or a
network interface, must operate beneath an acceptable threshold of utilization or that a component,
like a storage controller, must be able to achieve a minimum level of performance for the results
of an EBM experiment to be considered useful. It is important that the modeler implement reliable
runtime checks, which can assert that all such conditions hold throughout an experiment, before
accepting the experimental results (e.g., see [10]). Ensuring that appropriate runtime assertions
exist is also part of verification.

Verifying EBMs is essential for their credible use. There is a great deal of existing prior work re-
lated to software quality assurance [31], performance measurement, and specification testing [21]
that a modeler can refer to when building a verification strategy for EBMs. Software verification
is a useful activity that software users in general depend on. A modeler can often draw on a man-
ufacturer’s or open source developer’s test plans and results to support the claim that the virtual
machines and other components making up their model will perform according to their expecta-
tions, but in some cases new measurement studies will be needed [8] to ensure that key model
components meet our needs.

There is far less work on what it means to validate an EBM and that is the focus of the following
sections.

6.2 Validation

Oberkampf and Barone [22] define validation as:

Validation: The process of determining the degree to which a model is an accurate representation
of the real world from the perspective of the intended uses of the model.

In the computational science world, validation answers the question of whether we are doing the
right math to answer our question. In the world of EBMs, validation tells us whether a model is
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capable of answering the specific questions we are asking of it.

The general validation strategy is to test the predictive performance of a model. That is, one
uses the model to make predictions about the behavior of the system of interest under carefully
specified conditions, then one observes the behavior of the real world (or a real world surrogate)
under identical conditions. The observations from each environment are compared and, ultimately,
a judgment is made about whether the model’s predictive performance is adequate for the purpose
to which we want to put the model.

The basic idea of validation is simple, but there are a few complicating details that affect whether
validation activities are providing useful evidence. For example, what specifically should we mea-
sure about the model and the real world? How do we choose which configurations at which to
perform these validation comparisons? Exactly how do we perform the comparison? How does
one choose the real world surrogate to compare to? We will begin to discuss some of these concerns
in the following sections and demonstrate an end-to-end validation process via a case study.

6.3 Validation Process

Most validation efforts follow the same basic outline.

1. Understand the model’s purpose

2. Prioritize important model features

3. Select observables of the model to compare, known as Quantities of Interest (QoI)

4. Identify the model parameters and value ranges

5. Select a real world referent to which to compare your model

6. Design validation experiments

7. Perform the validation experiments and collect data

8. Compare the QoIs using a pre-defined validation metric

9. Compare the metric results to validity thresholds

10. Collect a description of the full validation process and the metric results into a credibility
case that can be used to judge whether a model is suitable for its purpose

Using case studies, which we introduce next, we will describe many of these steps and discuss how
they apply to validating EBMs, focusing on those that are tricky or have important pitfalls.
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6.4 Introduction to the Case Study

The case study we will use throughout our discussion of EBM validation is based on a model
of part of a large enterprise network that was an unwilling participant in a distributed denial of
service attack. The attack is known as an “amplification attack” and proceeds by finding instances
of a service, available on the internet, to which an attacker can issue many, relatively small requests
and which reply with relatively large responses. Ideally, from an attacker’s standpoint, the request
can be forged to claim to come from some other internet address. The forged source address of
the many requests corresponds to the victim of the attack which will be bombarded with many
large responses to requests it did not make. The ensuing traffic will consume the victim’s network
network resources and make it unable to perform its function.

In the specific case we will consider, the amplification mechanism was the domain name system
(DNS) security extension (DNSSEC), a variant of DNS that provides additional security features.
DNS is the service on the internet that translates names like “cnn.com”, “npr.org”, or “harvard.edu”
into numeric internet protocol addresses which are used by software clients and servers to connect
and communicate with one another. It works a bit like a telephone book which maps names of
people and businesses to their numeric telephone numbers. DNS is one of the core, indispensable
services on which the internet depends.

DNSSEC adds features that allow a user of DNS to verify that the information they receive about
a name-to-address translation actually comes from the authorized source. It does this using a
cryptographic mechanism called a digital signature. In addition to name-to-number translations,
a user of DNSSEC can request a digital signature of a set of translations and, given access to the
authorized publisher’s public key, can verify that the translations are genuine. DNSSEC provides
amplification to an attacker because the digital signature responses are substantially larger than
the associated requests and the design of DNS allows a requester to forge the source address of a
request.

In response to the attack on which our case study builds, the network operator quickly implemented
a number of mitigations in combination to stop the effects of the attack. The mitigations included:

• Isolating the DNS servers from the rest of the core network

• Disabling query logging on the DNS servers

• Implementing DNS rate limiting

The EBM we will be validating was used, after the fact, to examine each of the mitigations individ-
ually and in combination to determine which were the most effective. One interesting outcome of
the study was that the model predicted that mitigation two, disabling query logging, would actually
make the attack worse by increasing its efficiency.

Throughout this discussion we will refer repeatedly to this case study and our efforts to validate
this use of an EBM. The process included mistakes and failures, coverage of which we also include
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because they are informative. In the following sections we will discuss each of the steps involved
in performing validation of an EBM using examples from the case study as demonstrations.

6.5 Understanding the Model’s Purpose

Because models, including EBMs, can be used for such a wide variety of purposes, each of which
may have very different goals and requirements, there is little hope that a single validation process
could convince a skeptic that a model is appropriate to use for all possible purposes. Hence, the
goal of validation is to demonstrate that a use of a model for a particular purpose is appropriate.

Since it is the combination of a model and its purpose that one is validating, one must carefully
understand that purpose prior to embarking on any validation effort. This seems like common
sense, however, there is a consistent desire from funders and model users alike to have “validated”
models sitting on a shelf, ready for any possible future use. Without a specific purpose in mind,
however, validating a model devolves into trying to answer the question of if the model is good
enough without knowing “good enough for what?”. As clearly stated by Leslie Lamport, we should
“state the problem before describing the solution” [18].

Without a stated purpose, even the development of a model turns into tail chasing as we endeavor
to improve the general “fidelity” of the representation of a system, which results in an unguided
effort to make a model achieve arbitrarily high levels of accuracy. An unlimited amount of time
and effort can be devoted to improving the accuracy of a model without ever making it better for a
purpose we are actually interested in.

Without a purpose, we don’t know what to measure about a model and what to compare it to, so
judging model quality or accuracy is reduced to expert opinion based on the perceived quality of
the components or the virtue and pedigree of the researchers producing it.

A model’s purpose drives all of the remaining validation process steps including what features will
be important, what parts of the configuration space are relevant, exactly what measures will be
compared to the real world, and how close model predictions must be to those observed in the real
world to be useful.

In our case study, the purpose of the model is to predict the responses, both performance and
behavior, of the DNS system as configured in this enterprise network while it was subject to the
loads imposed by an amplification attack. We place special emphasis on the style and size of
the attack that actually occurred. Since it was a particularly surprising result at the time, we are
especially interested in the credibility of the model’s claim that disabling logging on the DNS
server leads to a more efficient attack.
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6.6 Prioritizing Model Features

Without further guidance, a validation process can consume project resources without bound be-
cause there is nearly an infinite number of aspects of a complicated systems model that one could
study and measure in an attempt to demonstrate suitability. One of the first stages of validation
is deciding which aspects of the model are most important for your particular use. Importance is
usually defined in terms of:

• How much an aspect or feature of the model influences experimental outcomes

• How closely related the aspect is to the model purpose

• Our ability to model a feature adequately using existing techniques and our uncertainty about
that ability

By prioritizing the features you include in a model and understanding where you need to focus
your validation attention, you can spend your time and effort validating the parts of the model
most relevant to the model’s purpose and very little time measuring irrelevant or already well
characterized aspects of the scenario being modeled.

Multiple structured thinking processes have been invented to assist in this stage of the validation
process. The details of the specific prioritization process you choose to follow are probably less
important than the key idea, which is to systematically consider each potential feature of the model
use and, using all available information, including previous validation or other experimental efforts
and expert judgment, rank each feature along the following two dimensions:

1. The impact of the model feature on the quantities of interest you will be measuring

2. How much you know about the feature and your ability to model it adequately

Minimally granular labels like “Low”, “Medium”, and “High” are usually sufficient, but more
detailed, quantitative labels can be used too.

The phenomena identification and ranking table (PIRT) process [29, 26], developed originally by
Shaw et al. and subsequently refined by many others, focuses on feature impact and modeling
uncertainty to choose priorities. Input/Uncertainty Maps [3], developed by Bayarri et al. do essen-
tially the same thing for combined impact and uncertainty. Depending on the complexity of the
system being considered, taking a hierarchical approach to organizing what the modeling and val-
idation team knows about the impact and uncertainty of each relevant subsystem and component
may be appropriate.

Small sensitivity experiments are helpful when determining how much influence a modeled feature
has on the outputs of a modeled scenario. If experiments show that a including or excluding a
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Feature Impact Modeling uncertainty
Core network high medium
DNS server software high low
DNS server platform high low
Attack load high high
Non-core network low high
Enterprise clients low medium
Attacker location low medium
Victim low medium

Table 1: Simple feature prioritization table

feature from the model or changing the values of an identified parameter have little impact on the
parts of the scenario relevant to the stated model purpose, its impact can naturally be lowered in
the analysis.

The key payoff of each of these structured thinking approaches is that, once the simple table or
other representation has been filled out, the aspects of the model on which you should spend your
limited time during the validation phase should be clear. They are the aspects that you have rated
high importance or high impact and about whose model adequacy you are most uncertain, which
is very intuitive.

Table 1 shows a simple priority ranking table that includes some of the model features we con-
sidered for emphasis in our case study. For the purpose of this validation exercise, we did not go
through a formal prioritization process. The table captures our informal deliberations as a team.
For more complicated validation studies, more rigor and broader participation by other subject
matter experts would be warranted.

In the table, for each feature we identified, we assign a label indicating how much impact we
believe it will have on the quantities we will be measuring. For example, we have rated “core
network” high because the inclusion and status of the network connecting the computers in our
model is obviously critical to our experiments. We also assign a label to each feature indicating
how confident we are in our ability to model it adequately. If we believe our representation of
a feature is adequate, it rates a low modeling uncertainty. If we have little experience with the
corresponding model component or have less confidence in its adequacy we rate it high as we have
done for “attack load” in Table 1.

For our case study, the prioritization process led us to believe that the key features for validation
included only the DNS server, including operating system and application software, the network
connecting the DNS server to the rest of the world, and the attack load. Other aspects of the
larger model including the rest of the enterprise network, the geographic location of attackers on
the internet, or details about the ultimate victim of the attack were deemed less important for the
specific questions we wanted to ask.
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When deciding how much to focus on variants of the DNS server platform configuration we per-
formed a variety of small sensitivity experiments, varying the number of CPUs, the amount of
RAM, and the network bandwidth and observed the effect on the DNS server performance as
measured by response times for loads in the planned range. That exercise helped us come to the
conclusion that, for this experiment and model, very little about the configuration of the machine
running the DNS server made much of a difference to its performance in the range of loads we
were considering other than the speed of the network. These conclusions will be reflected in the
reduced model we use during our validation experiments.

6.7 Select Quantities of Interest

Validation is an empirical, performance-oriented process. It is based on measuring some quantita-
tive feature of the model under specific conditions and inputs and comparing it with measurements
of the same quantity in some form of the real world under the same conditions and with the same
inputs. Hence, we must choose, based on our modeling purpose, what we will measure and why.
This value or set of values is typically called the Quantity of Interest (QoI).

For the purposes of our case study, the question is whether the model can predict the performance
of a DNS server under load. Hence, we need a way of measuring performance. What does perfor-
mance mean for a DNS server? For our initial attempt at model validation, we chose to measure
performance as the latency of DNS responses. This measures how long it takes the server to re-
spond to a specific request when it is under load from many other background requests. Response
time of the DNS server under load is our QoI.

Other example QoIs might include: the utilization of a server under load, whether a fault-tolerant
service remains available after an induced failure, or the convergence time of a distributed consensus-
based storage service.

It is important that the QoI you choose be available and measurable in the same way in both the
EBM and the real world environments to which you will be comparing. If measurements from
one of the environments must be post-processed before they can be used, the measurements from
the other environment should be treated the same way. The validation process is going to perform
direct comparisons between the values from each environment, so it is critical that confounding
differences in the measurements resulting from experimental or data collection and processing
artifacts are minimized.

6.8 Identify Model Parameters

To say something meaningful about the performance of an EBM, we must understand and, when
possible, control the circumstances under which the EBM is used as precisely as possible. This
is also true for other modeling techniques and applications. When using software simulations
implementing partial differential equations, for example, it is critical to explicitly state and control
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what the boundary or initial conditions are. The values in the model environment that are under
control of the experimenter and which can change the measured outputs are model parameters.
The selection of the parameters and the values they can take on specify the space in which the
validation experiments are embedded.

In complicated EBMs, the number of knobs that could be varied can be huge. For example, in a
model that may include thousands of virtual machines, every variable configuration setting for the
platform, system software, and application software is a potential parameter. However, managing a
large set of experimental parameters is impractical and, in our experience, almost never necessary.
Hence, the researcher should narrow the set of explicit experimental parameters to only those
relevant to the QoI and the study at hand. Sensitivity analysis may be helpful to determine which
parameters are relevant.

For example, imagine that an EBM includes many virtual machines representing enterprise client
computers. We have determined that we cannot simply eliminate such machines from the model
because the outcome of the experiment depends on occasional interaction with them, but none of
those machines is expected to participate in the experiment frequently or run at a high utilization.
Instead of including the configuration settings of each of these low-interaction components of the
model in our parameter set, we will simply fix each of the settings to a single value. The justifi-
cation, which we can demonstrate using a few simple sensitivity experiments, is that differences
in the configuration of these many machines will not materially affect the outcome of the overall
experiment.

There are a variety of parameters types that may be handled differently when using and validating
a model.

• Controlled parameters: parameters controlled by the experimenter that can take on a variety
of known values

• Fixed parameters: parameters for which there is a single known value

• Uncertain parameters: values known to vary, but whose specific values are not known

Controlled parameters are at the heart of the design of validation experiments. By varying their
values we specify what parts of the parameter space are relevant for our study. Because each
instance of a validation experiment tends to be time consuming, we want to limit ourselves to
values that actually tell us something new about the usefulness of the model for our purpose. We
cannot usually afford to do all of the experiments we would like. Carefully choosing where to
perform experiments in the, sometimes very large, parameter space is a key validation task, which
we will cover in the discussion of design of validation experiments.

A fixed parameter may be a controlled parameter for which the experimenter has decided that only
one value is relevant for the model’s purpose. They can also represent some aspect of the model
that, while controllable, has only one sensible value. While not variable, it is still important to
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identify such parameters because their value could change the outcome of the experiment and they
must be documented for repeatability.

Uncertain parameters are values that are known to exist, to affect the outcome of the experiment,
and may or may not vary, but for which the experimenter does not know the value. In some cases,
these could be inherently random variables that conform to some known or unknown distribution.
In other cases, the value of an uncertain parameter may be fixed, but simply unknown. For example,
when modeling a real network, one collects as much relevant information about the configuration
of its elements and network topology as possible, but some values may remain unavailable and
must be guessed.

While the values of controlled variables drive where in the configuration space a validation ex-
periment occurs, the values of uncertain parameters drive, in part, the variability we see in the
measured values of the QoI. For example, at a particular, fixed point in the multi-dimensional
validation parameter space we will measure specific values of the QoI. We will usually replicate
the experiment at that location a number of times, choosing values for uncertain parameters (or
allowing random, uncontrolled variables within the experiment to vary according to some distribu-
tion) and capture the range of values of the QoI that we observe. The variance of the QoI tells us
about the uncertainty with which our model predicts the real world QoI and is a key factor when
comparing the performance of a model to acceptable thresholds. The observed variability is the
sum of the intrinsic, uncontrolled randomness of the experiment, the uncertainty involved in our
measurements, and the variability induced by the uncertain parameters.

Ensuring that parameter values match between situations that will be compared is critical. In cases
where our real world referent is data from the real world, we must carefully collect the values of
the parameters we have identified as they existed at the time our real world data was collected.
Sometimes, that can be difficult and may lead to additional uncertainty. When uncertainty about
measured real world parameters exists, it should be reflected in the model parameters during model
runs. If we only know a real world value that is a parameter of the model was within some range, we
should include multiple model runs that vary the uncertain parameter across that range. A design
of experiments approach may be helpful to optimize parameter space exploration with multiple
parameters.

In our case study, we performed a small set of sensitivity experiments that showed DNS server
performance was not sensitive to any of the platform configuration values like number of CPUs or
RAM, as long as they were in sensible, commercially available ranges. The exception was network
speed. Since the network that was attacked had a specific, known configuration and this scenario
was our main interest, we chose to fix all of the parameters of the DNS server, including network
speed, to match the configuration of the server involved in the original attack as closely as possible.
The only remaining parameter in our validation study is, therefore, the load level, i.e., the number
of requests arriving at the DNS server per second, which varied during the actual attack.

It is important to remember that the number of locations at which you can choose to perform a
validation experiment will be tiny compared to the number of locations where you could potentially
locate an experiment. We will rarely have the luxury of testing the model at all locations in the
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Figure 2: Comparing a model to an experiment.

parameter space that are relevant to our purpose. In fact, the number of such locations could be
infinite. It is, therefore, common to have to interpolate between validation experiment locations or
even extrapolate beyond the envelope of our experiments when judging the value of a model use.
This topic will be discussed more in Section 7.4.

6.9 Select a real world Referent

The conceptual simplicity of validation is appealing. One just compares predictions made by a
model to an equivalent set of measurements of the real world. Unfortunately, the choice of what to
compare model predictions to is one of the trickier aspects of the validation process for EBMs. In
most cases we will not be able to directly compare our model to the actual real world situation in
which we are interested. We must usually compromise and compare our model to some, hopefully
meaningful, subset of the real world. The exception is when we have the luxury of comparing our
model outputs to data that has been directly collected from the real world systems we care about.
We will discuss both situations below.

Figure 2, depicts one of the complications when choosing how to compare a model to the real
world. Our desire is to compare the predictions from our simplified model to the behavior of the
unvarnished real world as shown at the top of the diagram. If we don’t have access to data from
the real world, our next best option is to compare to a surrogate for the real world, or referent.
A referent is usually a non-virtualized experiment. We cannot typically create an experiment that
captures all of the complex behaviors of the real world. In fact, our ability to construct a real world
experiment usually lags far behind our ability to construct a large, complicated model. The fact that
it is hard to build rich distributed systems experiments without virtualization is one of the reasons
we choose to use EBMs in the first place. Hence, our only option is to choose an experimental
situation that is simple enough to implement within our resources and that still tells us something
about the credibility of the model we want to use for our predictive purpose.
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Our typical approach has been to project from the real world into a simpler, more manageable
experimental space as depicted on the bottom right of Figure 2 then try to match the configuration
of our model to the reduced experiment as closely as possible as shown on the left hand side of
the diagram. Picking a reduced projection of the real world environment you are interested in as
a validation referent has many implications about the claims you can subsequently make about a
validated model. We need to carefully understand what aspects of the real world we are leaving
behind when simplifying the referent and adjust our credibility case accordingly. If the reduced
environment is not able to encompass all of the behaviors we are interested in validating, we may
need to validate multiple sub models and make an argument that the collective set of validations
provides adequate evidence for our use of composite model.

In the case study validation, our ultimate question is about mitigations for amplification attacks af-
fecting a particular organization’s network that is attached to the internet. The original results were
based on a model that encompassed significant chunks of the enterprise network, its connections
to the internet, and relevant pieces of the global routed autonomous system topology. In our val-
idation, we have scaled our validation environment dramatically down from the full environment
of the original enterprise network + ISP + internet model to a single DNS server under load. We
then matched our EBM to the configuration of the referent so that we were comparing like to like.

We believe that the reduced environment, though much simpler than the original, incorporates the
key features relevant to our question, namely how the performance of a DNS server changes in
response to attack load. We justify the projection to the referent by noting that the performance of
the DNS server is independent of what is happening elsewhere on the network given the load that
reaches it. This DNS server is authoritative for several zones and can answer queries about those
names without reference to any other system or service.

What if data collected from the real world is available to compare to? We certainly save ourselves
the trouble and potential pitfalls of projection as described above, but there are other concerns. In
the case when we use a reduced referent, we are ultimately comparing the results of a model and
a referent that match closely as shown at the bottom of Figure 2. If we have real world data, it
is far less likely that the model and referent will be obviously comparable. As shown at the top
of Figure 3, we would like to compare data collected from the complex, messy, and all-details-
included real world to an equivalently rich EBM. But, as a practical matter, we simply cannot
include every aspect of the real world in a model. Hence, we must make the argument that the
features we exclude from the EBM or the simplifications we make, as shown at the bottom of
Figure 3 are irrelevant for our chosen purpose, which may not be easy or convincing.

6.10 Design of Validation Experiments

The design of a validation experiment is the selection of the locations in the parameter space
where you will perform experiments. There is an extensive literature on designing good quality
experiments that can effectively answer research questions about the effects of various levels of
the parameters on the quantities of interest including parameter interactions and without having to
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Figure 3: Comparing a model to data collected directly from the real world.

explicitly include all possible parameter combinations in the design. Montgomery [20] provides a
thorough treatment of the design of experiments.

So far, our experience is that detailed and formal design of experiments has not been necessary,
but two principles have helped us select where to perform experiments.

The first is simply an intuition that one should perform experiments in the parts of the parameter
space that are important to the model purpose and about which one knows the least. If one part of
the space is more important, perhaps because it is more common or the consequences for failure
are higher there, then our attention should naturally focus there. If large parts of the space have
already been considered and our ignorance is concentrated in some part of the space, perhaps we
should focus our attention there.

We have no EBM-specific guidance for distributing the placement of experiments within the parts
of the parameter space you have chosen to focus on. Whether one should focus on the extreme
values, or evenly spread experiments throughout the chosen space, or place more experiments near
an interesting transition is up to the experimenter based on the goal of the validation and what
is already known. We have found it instructive to use the EBM itself to get a general flavor of
the behavior of the QoI in the area where validation experiments will be executed. This is often
feasible because running an EBM can be relatively inexpensive in terms of repeated setup and run
time. Understanding how the QoI is changing often provides useful insights about where to place
experiments to generate convincing evidence.

The second principle applies when the model purpose doesn’t naturally drive us to choose experi-
ments in one or another part of the space. Perhaps we are equally interested in the performance of
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the model across the entire space, for example. However, we are interested in getting the best value
from each of our limited validation experiments. In this case, we can take informal inspiration from
Bayes formula that shows how new information updates a prior belief.

P(A|B) = P(B|A)
P(B)

×P(A) (1)

In Equation 1, A is the event that a model is valid for our purpose and B is data collected during a
validation experiment. P(A|B) is the extent to which we believe, after observing a validation ex-
periment, that a model is credible for its purpose. The change in our belief is totally determined by
the first term. We increase our belief the most when the numerator P(B|A) is large and the denom-
inator P(B) is small. Intuitively, a large P(B|A) corresponds to observations, B, that consistently
hold if the model is credible. Small P(B), on the other hand, means that observing the outcome
generally, i.e., whether the model use is credible or not, is rare. Hence, our informal intuition is
that, all other things being equal, we get the most value by concentrating our experiments in ar-
eas where the model predicts consistent results that are also rare. These can correspond to rapid,
but consistent changes in performance or pointed peaks in utilization, for example. If a model
can correctly predict the fact of and location of such rare, but consistent, measurable features, our
confidence intuitively grows rapidly.

We only use Bayes formula for intuition purposes and it does not allow us to calculate how much
our confidence should grow given an experimental outcome. Others, however, are working on
quantitatively prioritizing experiments using, for example, value of information techniques [15].

6.11 Perform Experiments

At this stage, one carries out the experiments described by the experimental design. The design
specifies the initial conditions and other events that will occur at runtime during the experiment.

Collecting data is a key part of performing experiments that will be used as input to a validation
process. The QoI must be measured at the appropriate place and the correct time in both the EBM
and real world referent. As far as possible, the data should be collected in the same manner in
both environments. For our case study validation experiments, we used exactly the same tools and
techniques to collect our chosen QoI across the EBM and the real world experiments.

If time plays a role in the data collected, it is likely important to ensure that clocks are synchronized
across the underlying cluster or, in some cases, within the experimental virtual machines.

Experimentalists know that the act of measuring can itself perturb the object being measured.
When designing a data collection regime for a set of validation experiments, one should first en-
deavor to have as small an effect on the running experiment as possible. If the collection procedure
does change what is being measured, which is often difficult to measure itself, one should try
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to characterize that effect and take it into account during the comparison stage, especially if the
effects are different in the EBM and the real world referent.

As with any experimental setup, it is dangerous to assume that an initial condition or runtime
assumption holds during a validation experiment without verification. In fact, during certain stages
of our case study experiments we showed that the nominal load to which we wished to subject the
DNS server could not be sustained by the EBM environment. That fact called the results of the
experiment into question and led to a diagnosis of why one variant of our validation exercises
failed. All important experimental assumptions should be verified during validation experiments
whenever possible.

For our case study, we used Firewheel [14], a Sandia-developed EBM orchestration framework
that automates the creation and configuration of the various virtual machines and virtual networks
that make up an EBM. Most of our research group’s work happens in the context of Firewheel.

Other orchestration tools and approaches exist. While we have not gained much experience in us-
ing them, our intuition is that changes in the orchestration system or other parts of the experimental
process, like the specific computer cluster used to host an experiment, could have significant side
effects. Our current recommendation is, therefore, that validation-based credibility cases for a
model be limited in their application to the orchestration framework and even the cluster that they
were originally performed on until we have more experience ascertaining the true effect of those
variables on experimental outcomes.

6.12 Compare QoIs

A validation case is based on our ability to compare measurements from a model to measurements
made of some version of the real world. The technique for comparing those values is called a
validation metric. The output of the validation metric is the error between the prediction made by
the model and the, hopefully, more objective truth represented by the real world referent. Exactly
how we perform the comparison depends on the form of the QoI. Originally we imagined that the
QoIs we would measure for EBM-based validations would be large, multi-dimensional vectors of
values with types ranging from continuous values to categorical values to booleans. Consequently
we developed more involved validation metrics that could work for these complicated QoIs based
on concepts borrowed from cryptographic security games [4]. In fact, we have not yet had a need
to use them as all of the QoIs we have been exposed to have been simple continuous scalars.

Oberkampf and Barone [22] do a thorough job of describing the features that make up a good
validation metric for comparing mathematical models to experiments. In the case of EBMs, we are
comparing measurements from one set of experiments, the model, to the measurements of another
set of experiments, the referent, or to data collected from the real world. Oberkampf and Barone
cite six features of a good metric. The key characteristics that directly apply to EBMs are:

1. A metric should be quantitative (vs qualitative)
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2. A metric should take experimental uncertainty into account

The metric should be quantitative because we will eventually compare its value to a pre-defined
threshold that defines how accurate the model must be to fulfill our modeling purpose. If all we
have, for example, are two plots showing the QoI for each of the model and the real world referent,
it will be difficult to apply this filter.

The metric should take uncertainty into account for the same reason. If the point estimate of the
mean error across multiple replications of our validation experiment lies beneath our threshold,
but the variance is high enough that individual instances of the experimental results would fail the
threshold test, we need to know that.

While many validation metrics have been proposed. We have found that a simple statistical hy-
pothesis test for the difference of the means works well for the limited number of EBM validation
experiments we have performed. The test simply shows that the difference of the means of the
QoIs from each environment is less than a predefined threshold value by rejecting the null hypoth-
esis that the difference of the means is greater than or equal to the threshold. The test naturally
takes the variance of the two sample sets into account and returns a high confidence result that the
threshold was not exceeded. This is the approach taken in our simple case study.

Oberkampf and Barone emphasize the need to segregate the characterization of the error between
model prediction and experimental observation from the judgment about whether that error is
acceptable for the given purpose. One reason is that the decision about whether to use a model
or not depends on many factors, only one of which is the quantitative error between prediction
and measurement. The simple hypothesis test we describe could be said to violate this principle.
A similar procedure that strictly segregates characterization of error and judgment about the error
would be to produce a confidence interval around the estimated error and use that as input to the
credibility judgment.

6.13 Create a Credibility Case

A credibility case is the artifact provided to whomever will decide whether or not to use a model
for a particular purpose. A credibility case based on validation should include:

1. A clear statement about the intended use of the model

2. The PIRT or other process output that was used to select what features of the model to
prioritize for validation

3. A description of the real world referent and a justification for any reduction or deviation
from the environment in which the model will be used

4. The validation experiment design including each configuration space location where a vali-
dation experiment was performed and why
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5. The definition of the QoI, a justification for how it relates to the intended use of the model,
and how the measurements were collected

6. The definition of the validation metric

7. The experimental data that are the input to the validation metric

8. A statement of the performance threshold and a justification for why we believe a model is
useful for the given purpose if it can attain the corresponding level of performance

9. The results of the validation metric and how they compare to the performance threshold

The credibility case is one input for the decision to use a model along with a variety of other, some-
times non-technical concerns. Some examples of external factors include organizational appetite
for risk, the consequences of model failure, or whether and how an intended use must extrapolate
away from established validation experiment locations. Ultimately, the decision to use a model
involves engineering judgment. The results of a good quality validation study, however, can have
an appropriately large influence on the decision.
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7 Validation Case Studies

In this section we will detail two end-to-end, but very simple, EBM validation exercises and present
each in the form of a credibility case. The first attempt fails our stated credibility threshold. The
second succeeds by restricting the model purpose.

7.1 Validating an Absolute Performance Prediction Use

Our emulation-based model was used to evaluate a variety of mitigations applied to counter a
historical DNSSEC-based amplification attack on an actual enterprise network. Results from the
model were used to compare the effectiveness of multiple mitigation strategies. One important
measure of the effectiveness of a mitigation was the extent to which the ability of the DNS server
to respond to queries that were unrelated to the attack were slowed down or prevented. For this
case study, we wish to use an EBM to predict the absolute performance of a specific DNS server
under a large amplifying load implemented using requests for DNSSEC signatures.

Intended use of the model

Note that our first attempt at validating this model focuses on a relatively broad question about
whether an EBM is able to predict the absolute performance of a DNS server in a configuration
comparable to that used during the attack described in our case study discussion when the server
was under loads seen during that attack. In other words, would the DNS server within the EBM
exhibit the same performance as an identically configured DNS server in the (non-virtualized) real
world?

We believe this use case satisfies each of the four criteria for validatability described by Hodges
and Dewar [11]. The value we will predict is DNS server performance as indicated by response
times which are easy to measure. We expect performance to remain consistent across time and
be independent of elements that we chose to exclude from the model. Finally, it is easy for us to
collect ample data from both the EBM and our real world referent.

Prioritizing Features

As discussed earlier, we eliminated most of the original model from consideration because our val-
idation question had to do only with the performance of the DNS server under load. The topology
of our validation experiment is shown in Figure 4. The same topology is used in both the EBM and
real world referent cases. The configuration of the DNS server machine is fixed to approximately
match the configuration of the server that was in use during the attack in terms of the number of
CPU cores (16), the amount of RAM (16GB), and the attached network (1 Gbps). The experimen-
tal outcomes were not sensitive to the configuration of the loader and prober machines. For the
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Figure 4: Performance validation experimental setup.

purposes of this experiment their configuration was set to 16 CPU cores, 90 GB of RAM, and the
same 1 Gbps network to which the DNS server was attached.

The single variable to which the experiment outcome appeared to be sensitive was the level of
the network load. For the purposes of this experiment we will vary the load from 10,000 re-
quests/second to a maximum of 100,000 requests/second in steps of 10,000 requests/second. This
range encompasses the load observed during the actual attack.

Real World Referent

The referent to which we will compare the output of the EBM has the same topology as shown
in Figure 4. It was implemented using physical nodes of the same computer cluster on which we
performed the EBM experiments. The DNS server, loader, and prober were each a single physical
machine. The configurations of the machines were limited to that of the corresponding virtual
machine making up the EBM by selectively disabling CPU cores, making RAM unavailable, and
forcing the network interfaces to use a reduced signaling rate.

Experimental Design

For the machine configuration described above, in each of the EBM and real world referent envi-
ronments, we vary the load between 10,000 requests/second and 100,000 requests/second in steps
of 10,000. The load is sustained at a given load level for 150 seconds, enough time to generate 30
DNS probe requests 5 seconds apart.
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Quantity of Interest

The quantity that we will measure and compare between the EBM and real world referent environ-
ment is the response time of each probe request. This is the interval between the moment a request
is sent and the instant that a response is received. If a response is not received within 5 seconds,
the request is considered dropped. 5 seconds is the default timeout interval for the Linux DNS
resolver library. Dropped requests are represented in the output data as negative response times.

Latency, which is what we are measuring here, is the natural measure of performance for a server
of this type. Each DNS request is typically considered independent. Other potential measures like
throughput make less sense for a DNS server.

Validation Metric and Performance Threshold

Our validation metric in this experiment will consist of comparing the mean response time for each
load level between the EBM and the real world. Our threshold is indistinguishability, i.e., for the
model to be useful as a performance predictor, the output from the EBM and the real world should
be statistically indistinguishable. We define indistinguishable in this case as the inability to reject
the statistical null hypothesis that the difference between means is zero at each load level.

Experimental Results

Figure 5 includes two pairs of graphs that show the resulting data from the performance validation
experiment. Figure 5(a) shows the results from the real world, non-virtualized version of the
experiment. Figure 5(b) shows the EBM results. The top graph within each pair shows load. The
blue line indicates the requested load, the red line indicates the load that we measured actually
reaching the DNS server. The bottom graph within each of the pairs shows the response times for
each probe request. Bars with negative values in the bottom graph indicate a timed-out, assumed
dropped, request.

Our goal with this validation experiment is to compare the response time results and, if similar,
use that as evidence that our model is capable of predicting absolute DNS server performance
under load. We exercised our validation metric and find that it is possible to distinguish the mean
response times with high statistical significance (p� 0.01). Looking at the plots it is easy to see
that the response times across the two environments are very different. In the EBM case, there
are many dropped requests and the requests that are not dropped have much higher response times
than in the real world case.

If we look at the data a little more closely, we can begin to see what is happening. In the real world,
as depicted in Figure 5(a), our experiment is easily capable of sustaining the loads we request. The
red and blue lines match each other closely. In the EBM case as depicted in Figure 5(b) it is
clear that we are unable to sustain the requested loads. This is the first indicator that our EBM is
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Figure 5: Performance validation data.

40



experiencing a performance problem, but not exactly what that performance problem is.

With additional investigation we found that the core issue has to do with small packet network
performance under KVM, our chosen virtualization platform and the platform used by the original
experiments which we are attempting to validate. The load we supply consists of many small DNS
requests, whose size is about 50 bytes per packet. Because of the additional interrupt overhead
imposed by virtualization and the very large numbers of interrupts imposed by numerous small
packets, our system begins to bog down, lose packets, and is unable to match the small packet
throughput of a real world system. This effect was verified using other loading and measuring tools
outside our validation experiment. It is important to note that this problem is not a characteristic of
all virtualization platforms. We performed experiments with other hypervisors that do not exhibit
this performance issue. The difference is likely due to aggressive interrupt aggregation. The
problem does not extend to flows with larger packet sizes and commensurately lower interrupt
rates. KVM is capable of easily saturating a 1 Gbps link using larger packet sizes.

Judgment

Our validation experiment provides evidence against using this model to predict the absolute per-
formance of a DNS server under heavy load. It fails to meet our pre-defined performance threshold.

7.2 Validating a Logging Effect Prediction Case

The previous simple validation example showed an instance of failing to provide evidence sup-
porting the use of a model for a specific purpose. In fact, we generally advise against using EBMs
to predict absolute performance for just this reason. There are many performance pitfalls that are
sometimes non-intuitive and that have not yet been completely characterized.

In this section, we make another attempt at validating a nearly identical model for a related, but
more focused, purpose. It demonstrates that a model which is invalid for one use, may be perfectly
suitable for another, usually more restricted, use. This is one of those cases.

Intended Use of the Model

As we discussed earlier, one of the key outcomes of the original research effort described in the
case study was that disabling DNS query logging made the amplification attack significantly more
severe. In this set of validation experiments, we ask whether our model is capable of predicting
two aspects of this effect:

1. The presence of the effect (i.e., does the severity of the attack change in response to whether
query logging is enabled or disabled?)
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Figure 6: Logging validation setup.

2. The direction of the effect (i.e., does the severity of the attack get better or worse?)

Prioritizing Features

We use the same set of features and justifications for choosing those features as in the previous case
study. Our topology changes slightly to accommodate the new validation goal as shown in Figure 6.
We still maintain three machines, but their roles and titles change slightly. The DNS server still
serves DNSSEC signatures in response to attacker requests supplied by the loader. Instead of a
prober machine that directly measures DNS server performance under load, we introduce a victim
machine that is the ultimate recipient of the DNSSEC signature responses and which will be the
basis of a new quantity of interest described below.

The configuration of each of the EBM virtual machines remains the same as for the previous case
study.

Real World Referent

The referent to which we will compare the output of our EBM is identical to the topology shown
in Figure 6. We match the configurations using the same hardware limiting techniques described
previously.
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Experimental Design

The experiment scenario is that the loader issues requests for DNSSEC signature records to the
DNS server just as before. For this experiment we have fixed the target load to 100,000 re-
quests/second as this corresponds approximately to the peak of the real world attack and our ques-
tion is about the effect of logging at that peak rather than how DNS server performance changes
with load as before. The source address of the requests is spoofed by the loader to that of the
victim, so responses will be sent from the DNS server to the victim.

Our experimental design has one controllable variable, namely whether query logging is enabled
or disabled. Query logging is a feature of the Bind DNS server [1] which writes a record of
every query request to disk. During the experiment, the loader makes requests to the DNS server
for a period of 120 seconds. During that time the count of response packets seen by the victim
is recorded each second. We replicate the experiment 10 times for each case of query logging
enabled and query logging disabled.

Quantity of Interest

Our new quantity of interest is the severity of the attack as measured by the rate of attack response
packets incident on the victim measured in packets/second. This matches our new purpose which
is focused on measuring the difference in the intensity of the attack in response to changes in
query logging. We are no longer measuring or comparing the absolute performance of the DNS
server. We are measuring a change in the severity of the attack that occurs as a result of enabling
or disabling query logging.

Validation Metric and Performance Threshold

The performance threshold against which we will judge the model has three components:

1. Whether the predicted effect exists in both the EBM and the real world experiment

2. If the effect has the same direction in both environments

3. If both are “noticeable”, defined as at least 25% more severe under the no logging case as
under the logging case

Our validation metric is a simple Welch’s t-test across our 10 samples that measures our ability to
reject the null hypothesis that the difference between the no logging and logging attack severity is
less than 25% of the logging case.
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Figure 7: Summary logging validation experiment results.
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Experimental Results

Summary results for the experiment are shown in Figure 7. There is one plot for each of the
real world (Figure 7(a)) and emulated (Figure 7(b)) cases. The left two bars show the load in
requests/second as measured arriving at the DNS server for each of the logging and no logging
cases. The right two bars show the load in responses/second as observed arriving at the victim
for the logging and no logging cases. The graphs show that both the real world and emulated
cases exhibit the same kind of logging effect that was predicted by the original study, namely that
disabling query logging increases the efficiency of the amplifier and makes the attack more severe
at the victim. A t-test strongly rejects (p < 0.0001) the null hypothesis that the difference between
the no logging and logging attack severity is less than 25% of the logging case.

Judgment

This second validation case study provides supporting evidence that our model is appropriate to use
for the more limited predictive purposes we set out at the beginning of the section. This is despite
the fact that the same small packet performance problems exist, which can be seen in the reduced
load the emulated case is capable of supplying and in the significantly smaller load observed at the
victim in the emulated case vs the real world case in Figure 7.

We believe the key difference that allows the second case study to succeed where the first failed is
the fact that, in the second case, the prediction we expect the model to make concerns a relative,
rather than an absolute, performance effect. Reproducing relative performance and basic system
behaviors that are not particularly sensitive to the performance bias imposed by virtualization is
something that EBMs are often suited for. Because of the tolerance that most software has to vir-
tual time [13], many interesting distributed systems questions not related to absolute performance
prediction are actually good candidates for EBM studies.

7.3 Case Study Summary

The validation cases we have presented are intentionally simple and easy to follow. There is a lot
of room to perform more capable and, consequently, more involved and complicated validation
tests. The key point we want to make with this paper, however, is that, as a community, we are
very early in our thinking about EBMs in this more critical and rigorous way. Our first steps should
be to encourage and support the notion that we need to justify our uses of EBMs to ourselves as
creators of EBMs and to those who want to use their results.
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7.4 A Note on Interpolation and Extrapolation in EBMs

Interpolation and extrapolation involve deducing values at locations we have not measured. In-
terpolation imputes values that occur between measured points and extrapolation does the same
for points that lie outside the envelope of our measurements. For smooth, continuous processes,
interpolated values can represent the underlying process well. Extrapolation of trends beyond what
we have measured is always fraught with danger and uncertainty.

EBMs include some features that might help us have more confidence when interpolating between
measurements and some that may cause greater uncertainty. EBMs exhibit a lot of internal struc-
ture. They are strong explanatory models that directly replicate many of the inner workings of the
systems they represent rather than tracking an externally visible response. Hence, EBMs could be
more resistant to the simplification effects that strictly descriptive, statistical, or response surface
models fall prey to.

While a computing system is capable of exhibiting arbitrary, non-continuous behavior, they are
often designed to avoid exactly that, i.e., to be predictable. Hence, in the typical performance
regimes that systems often inhabit, highly unpredictable behavior is less likely by design. But,
when using EBMs to study extreme behaviors outside the normal design space or when investigat-
ing the behaviors of combinations of systems that developers may not have foreseen, interpolation
should be used with great care and little confidence.
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8 Evaluating Non-predictive Uses of EBMs

EBMs are used in many situations that will not be amenable to strict validation. In fact, some
of the most useful applications of EBMs like generating ideas, training environments, or doing
demonstrations fit into that category. Being able to generate some confidence in these uses of
EBMs is just as important as validation is in the predictive modeling case. In the following sections
we consider other, non-predictive uses of EBMs and introduce some ideas for how one might
evaluate such an EBM use.

8.1 Training

Evaluating whether an EBM is providing an effective environment for a particular training use
case is a sub task of evaluating whether the training itself is effective. The first step in that process
is being able to clearly state and understand what the training objective is. Unfortunately, this is
more of a problem than it should be. Often training occurs because of a top-down mandate to “do
training” without specific, well-reasoned goals attached.

Assuming a clear training objective does exist, the next question is whether we can detect if the
objective has been achieved. Some objectives may not lend themselves to being measured or even
observed, especially in the short term. An objective like “improve cyber defense skills” is too
vague for any sort of immediate measurement to be possible. Other, more specific and measurable
objectives like “reduce average incident response time from detection to deployed mitigation for
internet-based denial of service attacks from the current 3 hours to 10 minutes” are specific and
measurable by testing multiple instances of response times before and after training. As with other
evaluation processes, the first, most important, but often missing, step is simply stating what the
purpose of an activity is and ensuring that there are values we can measure that tell us something
about the extent to which that purpose is being achieved.

There are at least two additional complicating factors when evaluating whether EBMs are being
used effectively for training. The first is whether a training effect achieved using the EBM will
manifest itself in the real world. It may be that the performance of a trainee increases measur-
ably within the training environment, but the performance of the same person or group remains
unchanged or even gets worse in the real world. This problem is not unique to training exercises
using EBMs. In fact, skills learned in one real world situation are not guaranteed to be portable to
a different real world situation. In any case, it is important to measure training effectiveness in the
real world environments we actually care about in addition to measuring performance within the
training environment.

The second complicating factor when evaluating EBM use for training is diagnosing whether a
training failure, that is, a failure to measurably improve the performance of a trainee, is attributable
to the EBM environment or some other factor. Training can be ineffective for many combinations
of reasons and it can be difficult to assign causality to each potential factor. Once again, this is
not a problem specific to EBM use in training environments. The same issue comes up in any
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multi-factor measurement study. With enough data and carefully designed experiments we can
demonstrate the relative contribution of various treatments to a measured outcome using well-
understood statistical techniques. While possible, it seems unlikely that training organizers will
spend the required effort and resources to rigorously diagnose why a training exercise failed and
what was to blame.

Luckily the difficult parts of both of the complicating factors described above for evaluating EBM
use in training scenarios only occur when we fail to meet the overall training objective and the
exercise provides unacceptably low benefit. As long as one can show, via measurements of per-
formance in the real world, for example, that a training exercise meets its objectives, no additional
effort is required. In the case of failure, other heuristic or intuitive techniques will, in most cases,
be cheaper and more appropriate for generating alternative training scenarios to test.

Operations

We include a discussion of evaluating operational uses of EBMs in the section on testing because
they share the same underlying question, namely “Did it work?”. When using an EBM to create a
deception network, for example, we are far less interested in whether it is an accurate representation
than if it actually worked to reveal or dissuade an adversary. Instead of evaluating the EBM, we
evaluate the operational purpose of the EBM directly.

8.2 Test and Evaluation

Using an EBM as an environment in which to perform T&E is like training in some senses and
more like prediction in others. Like training we are simply using an EBM as an environment in
which to perform some other activity. When thought of this way, the T&E application of EBMs
falls prey to some of the same pitfalls as training. If the T&E process fails, to what do we attribute
the failure: the EBM or some other aspect of the test plan?

If, however, one thinks about the T&E application as a whole, where the EBM is an integrated
part of the full testing and evaluation process, we can think about it more in terms of a predictive
process where validation might apply. A T&E study using an EBM is predictive in the sense that
results from tests carried out in the virtualized environment are expected to hold in the real world.
There would be little purpose in performing the tests if we didn’t believe the tests would indicate
what the performance of the system under test would be when it is deployed.

In just the same way we perform a limited number of validation experiments to build a credibility
case for the continued use of scientific models, we can perform a small number of paired validation
tests for the full, end-to-end T&E process in both an EBM environment and in the real world. If the
agreement satisfies our carefully chosen performance thresholds, we gain confidence that a more
extensive testing regime, executed solely within an EBM, will satisfy the larger T&E requirement.
So, T&E in a virtualized environment can’t be a complete substitute for real world testing, but it
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can be used to reduce the number of (often expensive) real world tests in a justifiable way that
doesn’t sacrifice our ability to test under a usefully large set of conditions.

The same T&E philosophy would seem to apply to other kinds of testing that use a reduced exper-
imental model of reality for testing purposes. Wind tunnels are used extensively for this purpose to
test air frames, wings, air sampling systems, and many other devices. Our informal survey of the
literature citing wind tunnel testing, however, rarely mentions evaluating whether a specific use of
a wind tunnel is credible. Part of the lack of evaluation may be due to the regular and extensive
calibration process that many large wind tunnels are subject to. This approach doesn’t apply to
EBMs. EBMs are typically custom built for a specific purpose. A standard calibration process
would not work generally for the broad diversity of possible EBMs.

If we change our perspective on T&E using EBMs we get some distinct advantages. By switching
away from the view that EBMs simply provide a convenient environment in which to execute an
independently developed test plan that could just as easily be performed in a non-virtualized envi-
ronment, to one where we think about the full, end-to-end test as an integrated unit, we transform
the T&E process into a predictive use of a model. If we fulfill the requirements for validatability,
we can then bring the full power of validation to bear to build confidence in the virtualized, and
much less expensive, T&E outcomes.

8.3 Idea Generation and Demonstration

There are two other main uses of EBMs we have discussed. They both have more limited needs
when it comes to evaluation, but still require some vigilance.

The first of these uses is idea generation. EBMs are often used in this way and it is an excel-
lent and productive way to use the technology. Idea generation is typically an early stage, rapid
turnaround, low rigor activity. The ability to try something out, make some observations, and it-
erate quickly is much more important than convincing a skeptic that your early stage musings are
correct. Exploratory uses of EBMs like these will all need additional work before they are ready to
withstand much criticism. It doesn’t make sense to spend a lot of time evaluating such disposable
models. However, thinking about verification is still useful. Having sharp tools whose properties
we understand can enhance even early stage, exploratory uses of EBMs.

Building demonstrations is another use case we considered. In contrast to idea generation, demon-
strations typically come much later in an investigation process. Here we are using the convenience
of EBMs to demonstrate an idea that has been proven out in some other way. The existence of an
EBM-based demo should never be used as evidence that the underlying ideas are true any more
than a cut-away model of a complicated mechanical process tells us anything about its reliability or
performance. The point is to communicate an idea. Any evidence for or against the demonstrated
idea must come from a separate, and carefully considered, process.

In both of these cases, the most important factor is consistently communicating the true status of
a model to those who are consuming its results. For an outsider, it will be difficult to distinguish
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whether a model has been carefully evaluated or not. The responsibility falls on the model de-
veloper or user to honestly represent the level of confidence we should have in a model and be
prepared to provide supporting evidence.

Finally, we must always resist the very common demand to use an unevaluated model in a pre-
dictive way or for evidenciary purposes. The pressure to do so can sometimes be enormous. An
unevaluated EBM can be a convenient and powerful tool, but we should not misuse it.
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9 Conclusion

Emulation based models of computing, communication, and control systems are powerful tools for
observing, learning about, and, in some cases, predicting the behavior of complicated systems that
we don’t understand well. We have seen EBMs used in many different ways spanning training, test
and evaluation, evaluation of engineering design alternatives, or even making credible predictions
of distributed systems’ behavior.

As with any model, we should ask ourselves if we are using EBMs in a credible way. We can
convince ourselves and others by building a credibility case based on techniques that range from
rigorous comparison of model predictions and real world observations to careful thinking about
what we expect of a model and its ability to deliver what we want.

In this paper, we have laid out a few approaches to building such a case, spending the most time on
validation, the preferred technique when we expect a model to reproduce the behavior of a system
in the real world. Other model uses don’t merit the extensive effort demanded by validation. Nev-
ertheless, careful credibility thinking is warranted to ensure that we use our tools in the appropriate
way.

In all cases we should be ready to justify how we have chosen to use these flexible tools and
honestly communicate to what extent we should trust their results.
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